MATH2050C Assignment 10

Deadline: April 1, 2025.
Hand in: 5.3 no. 1, 5, 6, 12, 15. Suppl Problem no 1.

Section 5.3 no. 1, 3, 4, 5, 6, 12, 13, 15, 17.
Supplementary Problems

1. Let f € Cla,b]. Suppose that f(z) > 0 for all x € [a,b]. Show that there is some p > 0
such that f(z) > p for all = € [a,b]. Hint: Use Suppl. Problem no 3 in Ex 9 and apply
the Heine-Borel Theorem.

2. Use the previous problem to deduce the Max-Min Theorem.

3. Let A be a set in R which contains at least two points and satisfies: Whenever z,y €
A, x < y, implies the interval [z,y] C A. Prove that A is an interval.

See next page
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Heine-Borel Theorem

A collection of open intervals {I,}, o € A, is called an open covering of the set Aif A C J,c 4 La-
Here A could be an uncountable index set.

Theorem 10.1 (Heine-Borel Theorem) Let {I,} be an open covering of the interval [a, b].
There are finitely many Io,, -+, Ia, so that [a,b] C U;_; . ,, 1o, -

In other words, every open cover of [a,b] admits a finite subcover.

Proof: Suppose on the contrary there is no finite subcover of [a,b]. Divide [a,b] equally into
two subintervals. Then at least one of these subintervals does not admit any finite subcover.
Pick one and call it J;. Dividing J; equally and repeating our selection, in this way we obtain a
sequence of closed intervals {J;}, Jj+1 C J; with length decreasing to 0. Each J; does not admit
any finite subcover from {I,}. By Nested Interval Theorem, there is z € [); J;. Since z € [a, ]
and {I,} forms a cover of [a,b], z € I, for some I,,. It is clear that for sufficiently large j,
Jj C I,. But then J; is covered by the single I,,, contradicting the assumption that J; does
not admit any finite subcover from {I,}.

As an illustration of the applications of this theorem, we present an alternative proof of the
boundedness theorem.

Theorem 10.2 (Boundedness Theorem) Every continuous function on [a, b] is bounded.

Proof: For x € [a,b], we claim there are some 0, > 0 and M, > 0 such that |f(y)| < Mg, y €
(x — 0z, x 4+ d;). (We have put an index x under M and ¢ to emphasis their dependence on z.)
Well, just take € = 1, there is some ¢, such that |f(y) — f(z)| < 1 for y, |y — | < 6. It follows
that

< f) = f@)+f(@)] <1+ f(@) =My, y€(x— 0,04 0s)

The open intervals I, = (x — d,,z + J,) forms an open cover of [a,b]. By Heine-Boral Theorem
there is a finite subcover by I, ,--- , I, so that [a,b] C |, I,. Every = € [a,b] must belong to
some I, so |f(z)] < M = max{M,, -, My, }.

Continuous Functions in R"

A sequence {p,} in RY is called convergent to p if for each € > 0, there is some ng such that
lpn — p| < & for all n > ng. For p € R, |p| = (X pey 23)/2,p = (21,--- ,2y) is its Euclidean
norm and |p, — p| is the Euclidean distance between p,, and p. It is easy to see that p, — p iff
= Xy, ,xfy%:cN.

Let f be defined on A € RN and = € A. It is continuous at p if for each € > 0, there is some &
such that |f(q) — f(p)| <eforall ¢ € A,|qg—p| < 0.

A nonempty set in RY is closed if it contains all its cluster points. In other words, A is closed
if whenever {p,} C A,p, — p implies that p € A. We will use a closed, bounded set to replace
a closed, bounded interval in higher dimensions. The following theorems can be proved as in
the one dimensional case by the Bolzano-Weierstrass Theorem whose higher dimension version
is easy to obtain.

Theorem 10.3 (Boundedness Theorem) Let f be continuous on a closed, bounded set K
in RY. There exists some M such that |f(p)| < M for all p € K.
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Theorem 10.4 (Max-Min Theorem) Let f be continuous on a closed, bounded set K in
RN . There exist p; and pp in K such that f(p;) < f(p) and f(p) < f(p2) for all p € K.

The extension of the Location of Root Theorem to R requires the notion of connectedness.

A set F in R" is connected if every two points p and ¢ in E can be connected by a continuous
curve from p to ¢ in F, that is, 7(0) = p,v(1) = ¢. Recall from Advanced Calculus that a
continuous curve y(t) = (y1(t), -+, (t)) is map from [0, 1] to E where all components ;s are
continuous.

Theorem 10.5 (Root Theorem) Let f be continuous on a connected set £ in RV, Suppose
there are p and ¢ in E satisfying f(p)f(q) < 0. There is some r € E such that f(r) = 0.

The proof is a reduction to one-dimension. Fix a continuous curve v in E connecting p to gq.
Consider the composite function g(¢t) = f(+(t)) which is a continuous function on [0, 1] to R. As
9(0)g(1) = f(p)f(q) < 0, By Root Theorem, g(c) = 0 for some ¢ € (0,1). Thus f(r) = 0 where

r=(c).

Remark In Advanced Calculus we study integration on regions. A region consists of all points
lying inside a closed curve (or bounded by several closed curves) as well as all the boundary
points (that is, points on these curves). It is a closed, bounded, connected set.



