
MATH2050C Assignment 10

Deadline: April 1, 2025.

Hand in: 5.3 no. 1, 5, 6, 12, 15. Suppl Problem no 1.

Section 5.3 no. 1, 3, 4, 5, 6, 12, 13, 15, 17.

Supplementary Problems

1. Let f ∈ C[a, b]. Suppose that f(x) > 0 for all x ∈ [a, b]. Show that there is some ρ > 0
such that f(x) ≥ ρ for all x ∈ [a, b]. Hint: Use Suppl. Problem no 3 in Ex 9 and apply
the Heine-Borel Theorem.

2. Use the previous problem to deduce the Max-Min Theorem.

3. Let A be a set in R which contains at least two points and satisfies: Whenever x, y ∈
A, x < y, implies the interval [x, y] ⊂ A. Prove that A is an interval.

See next page
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Heine-Borel Theorem

A collection of open intervals {Iα}, α ∈ A, is called an open covering of the set A if A ⊂
⋃

α∈A Iα.
Here A could be an uncountable index set.

Theorem 10.1 (Heine-Borel Theorem) Let {Iα} be an open covering of the interval [a, b].
There are finitely many Iα1 , · · · , Iαn so that [a, b] ⊂

⋃
j=1,··· ,n Iαj .

In other words, every open cover of [a, b] admits a finite subcover.

Proof : Suppose on the contrary there is no finite subcover of [a, b]. Divide [a, b] equally into
two subintervals. Then at least one of these subintervals does not admit any finite subcover.
Pick one and call it J1. Dividing J1 equally and repeating our selection, in this way we obtain a
sequence of closed intervals {Jj}, Jj+1 ⊂ Jj with length decreasing to 0. Each Jj does not admit
any finite subcover from {Iα}. By Nested Interval Theorem, there is z ∈

⋂
j Jj . Since z ∈ [a, b]

and {Iα} forms a cover of [a, b], z ∈ Iα0 for some Iα0 . It is clear that for sufficiently large j,
Jj ⊂ Iα0 . But then Jj is covered by the single Iα0 , contradicting the assumption that Jj does
not admit any finite subcover from {Iα}.

As an illustration of the applications of this theorem, we present an alternative proof of the
boundedness theorem.

Theorem 10.2 (Boundedness Theorem) Every continuous function on [a, b] is bounded.

Proof: For x ∈ [a, b], we claim there are some δx > 0 and Mx > 0 such that |f(y)| ≤ Mx, y ∈
(x− δx, x+ δx). (We have put an index x under M and δ to emphasis their dependence on x.)
Well, just take ε = 1, there is some δx such that |f(y)− f(x)| < 1 for y, |y − x| < δx. It follows
that

|f(y)| ≤ |f(y)− f(x)|+ |f(x)| ≤ 1 + f(x) ≡ Mx , y ∈ (x− δx, x+ δx).

The open intervals Ix = (x− δx, x+ δx) forms an open cover of [a, b]. By Heine-Boral Theorem
there is a finite subcover by Ix1 , · · · , Ixn so that [a, b] ⊂

⋃
i Ixi . Every x ∈ [a, b] must belong to

some Ixi , so |f(x)| ≤ M ≡ max{Mx1 , · · · ,Mxn}.

Continuous Functions in Rn

A sequence {pn} in RN is called convergent to p if for each ε > 0, there is some n0 such that
|pn − p| < ε for all n ≥ n0. For p ∈ Rn, |p| = (

∑N
k=1 x

2
k)

1/2, p = (x1, · · · , xN ) is its Euclidean
norm and |pn − p| is the Euclidean distance between pn and p. It is easy to see that pn → p iff
xn1 → x1, · · · , xNn → xN .

Let f be defined on A ⊂ RN and x ∈ A. It is continuous at p if for each ε > 0, there is some δ
such that |f(q)− f(p)| < ε for all q ∈ A, |q − p| < δ.

A nonempty set in RN is closed if it contains all its cluster points. In other words, A is closed
if whenever {pn} ⊂ A, pn → p implies that p ∈ A. We will use a closed, bounded set to replace
a closed, bounded interval in higher dimensions. The following theorems can be proved as in
the one dimensional case by the Bolzano-Weierstrass Theorem whose higher dimension version
is easy to obtain.

Theorem 10.3 (Boundedness Theorem) Let f be continuous on a closed, bounded set K
in RN . There exists some M such that |f(p)| ≤ M for all p ∈ K.
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Theorem 10.4 (Max-Min Theorem) Let f be continuous on a closed, bounded set K in
RN . There exist p1 and p2 in K such that f(p1) ≤ f(p) and f(p) ≤ f(p2) for all p ∈ K.

The extension of the Location of Root Theorem to RN requires the notion of connectedness.

A set E in Rn is connected if every two points p and q in E can be connected by a continuous
curve from p to q in E, that is, γ(0) = p, γ(1) = q. Recall from Advanced Calculus that a
continuous curve γ(t) = (γ1(t), · · · , γn(t)) is map from [0, 1] to E where all components γk’s are
continuous.

Theorem 10.5 (Root Theorem) Let f be continuous on a connected set E in RN . Suppose
there are p and q in E satisfying f(p)f(q) < 0. There is some r ∈ E such that f(r) = 0.

The proof is a reduction to one-dimension. Fix a continuous curve γ in E connecting p to q.
Consider the composite function g(t) = f(γ(t)) which is a continuous function on [0, 1] to R. As
g(0)g(1) = f(p)f(q) < 0, By Root Theorem, g(c) = 0 for some c ∈ (0, 1). Thus f(r) = 0 where
r = γ(c).

Remark In Advanced Calculus we study integration on regions. A region consists of all points
lying inside a closed curve (or bounded by several closed curves) as well as all the boundary
points (that is, points on these curves). It is a closed, bounded, connected set.


