MATH2050C Assignment 10

Deadline: April 1, 2025.

Hand in: 5.3 no. 1, 5, 6, 12, 15. Suppl Problem no 1.

Section 5.3 no. 1, 3, 4, 5, 6, 12, 13, 15, 17.

Supplementary Problems

- 1. Let $f \in C[a, b]$. Suppose that f(x) > 0 for all $x \in [a, b]$. Show that there is some $\rho > 0$ such that $f(x) \ge \rho$ for all $x \in [a, b]$. Hint: Use Suppl. Problem no 3 in Ex 9 and apply the Heine-Borel Theorem.
- 2. Use the previous problem to deduce the Max-Min Theorem.
- 3. Let A be a set in \mathbb{R} which contains at least two points and satisfies: Whenever $x, y \in A, x < y$, implies the interval $[x, y] \subset A$. Prove that A is an interval.

See next page

Heine-Borel Theorem

A collection of open intervals $\{I_{\alpha}\}, \alpha \in A$, is called an open covering of the set A if $A \subset \bigcup_{\alpha \in A} I_{\alpha}$. Here A could be an uncountable index set.

Theorem 10.1 (Heine-Borel Theorem) Let $\{I_{\alpha}\}$ be an open covering of the interval [a, b]. There are finitely many $I_{\alpha_1}, \dots, I_{\alpha_n}$ so that $[a, b] \subset \bigcup_{j=1,\dots,n} I_{\alpha_j}$.

In other words, every open cover of [a, b] admits a finite subcover.

Proof: Suppose on the contrary there is no finite subcover of [a, b]. Divide [a, b] equally into two subintervals. Then at least one of these subintervals does not admit any finite subcover. Pick one and call it J_1 . Dividing J_1 equally and repeating our selection, in this way we obtain a sequence of closed intervals $\{J_j\}, J_{j+1} \subset J_j$ with length decreasing to 0. Each J_j does not admit any finite subcover from $\{I_\alpha\}$. By Nested Interval Theorem, there is $z \in \bigcap_j J_j$. Since $z \in [a, b]$ and $\{I_\alpha\}$ forms a cover of $[a, b], z \in I_{\alpha_0}$ for some I_{α_0} . It is clear that for sufficiently large j, $J_j \subset I_{\alpha_0}$. But then J_j is covered by the single I_{α_0} , contradicting the assumption that J_j does not admit any finite subcover from $\{I_\alpha\}$.

As an illustration of the applications of this theorem, we present an alternative proof of the boundedness theorem.

Theorem 10.2 (Boundedness Theorem) Every continuous function on [a, b] is bounded.

Proof: For $x \in [a, b]$, we claim there are some $\delta_x > 0$ and $M_x > 0$ such that $|f(y)| \leq M_x$, $y \in (x - \delta_x, x + \delta_x)$. (We have put an index x under M and δ to emphasis their dependence on x.) Well, just take $\varepsilon = 1$, there is some δ_x such that |f(y) - f(x)| < 1 for $y, |y - x| < \delta_x$. It follows that

$$|f(y)| \le |f(y) - f(x)| + |f(x)| \le 1 + f(x) \equiv M_x$$
, $y \in (x - \delta_x, x + \delta_x)$.

The open intervals $I_x = (x - \delta_x, x + \delta_x)$ forms an open cover of [a, b]. By Heine-Boral Theorem there is a finite subcover by I_{x_1}, \dots, I_{x_n} so that $[a, b] \subset \bigcup_i I_{x_i}$. Every $x \in [a, b]$ must belong to some I_{x_i} , so $|f(x)| \leq M \equiv \max\{M_{x_1}, \dots, M_{x_n}\}$.

Continuous Functions in \mathbb{R}^n

A sequence $\{p_n\}$ in \mathbb{R}^N is called convergent to p if for each $\varepsilon > 0$, there is some n_0 such that $|p_n - p| < \varepsilon$ for all $n \ge n_0$. For $p \in \mathbb{R}^n$, $|p| = (\sum_{k=1}^N x_k^2)^{1/2}$, $p = (x_1, \dots, x_N)$ is its Euclidean norm and $|p_n - p|$ is the Euclidean distance between p_n and p. It is easy to see that $p_n \to p$ iff $x_1^n \to x_1, \dots, x_n^N \to x_N$.

Let f be defined on $A \subset \mathbb{R}^N$ and $x \in A$. It is continuous at p if for each $\varepsilon > 0$, there is some δ such that $|f(q) - f(p)| < \varepsilon$ for all $q \in A, |q - p| < \delta$.

A nonempty set in \mathbb{R}^N is closed if it contains all its cluster points. In other words, A is closed if whenever $\{p_n\} \subset A, p_n \to p$ implies that $p \in A$. We will use a closed, bounded set to replace a closed, bounded interval in higher dimensions. The following theorems can be proved as in the one dimensional case by the Bolzano-Weierstrass Theorem whose higher dimension version is easy to obtain.

Theorem 10.3 (Boundedness Theorem) Let f be continuous on a closed, bounded set K in \mathbb{R}^N . There exists some M such that $|f(p)| \leq M$ for all $p \in K$.

Theorem 10.4 (Max-Min Theorem) Let f be continuous on a closed, bounded set K in \mathbb{R}^N . There exist p_1 and p_2 in K such that $f(p_1) \leq f(p)$ and $f(p) \leq f(p_2)$ for all $p \in K$.

The extension of the Location of Root Theorem to \mathbb{R}^N requires the notion of connectedness.

A set E in \mathbb{R}^n is connected if every two points p and q in E can be connected by a continuous curve from p to q in E, that is, $\gamma(0) = p, \gamma(1) = q$. Recall from Advanced Calculus that a continuous curve $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ is map from [0, 1] to E where all components γ_k 's are continuous.

Theorem 10.5 (Root Theorem) Let f be continuous on a connected set E in \mathbb{R}^N . Suppose there are p and q in E satisfying f(p)f(q) < 0. There is some $r \in E$ such that f(r) = 0.

The proof is a reduction to one-dimension. Fix a continuous curve γ in E connecting p to q. Consider the composite function $g(t) = f(\gamma(t))$ which is a continuous function on [0, 1] to \mathbb{R} . As g(0)g(1) = f(p)f(q) < 0, By Root Theorem, g(c) = 0 for some $c \in (0, 1)$. Thus f(r) = 0 where $r = \gamma(c)$.

Remark In Advanced Calculus we study integration on regions. A region consists of all points lying inside a closed curve (or bounded by several closed curves) as well as all the boundary points (that is, points on these curves). It is a closed, bounded, connected set.